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Improved understanding of year-to-year late-spring soil nitrate 
test (LSNT) variability could help make it more attractive to 
producers. We test the ability of the Root Zone Water Quality 
Model (RZWQM) to simulate watershed-scale variability due 
to the LSNT, and we use the optimized model to simulate long-
term fi eld N dynamics under related conditions. Autoregressive 
techniques and the automatic parameter calibration program 
PEST were used to show that RZWQM simulates signifi cantly 
lower nitrate concentration in discharge from LSNT treatments 
compared with areas receiving fall N fertilizer applications 
within the tile-drained Walnut Creek, Iowa, watershed (>5 mg 
N L−1 diff erence for the third year of the treatment, 1999). Th is 
result is similar to fi eld-measured data from a paired watershed 
experiment. A statistical model we developed using RZWQM 
simulations from 1970 to 2005 shows that early-season 
precipitation and early-season temperature account for 90% 
of the interannual variation in LSNT-based fertilizer N rates. 
Long-term simulations with similar average N application rates 
for corn (Zea mays L.) (151 kg N ha−1) show annual average N 
loss in tile fl ow of 20.4, 22.2, and 27.3 kg N ha−1 for LSNT, 
single spring, and single fall N applications. Th ese results 
suggest that (i) RZWQM is a promising tool to accurately 
estimate the water quality eff ects of LSNT; (ii) the majority 
of N loss diff erence between LSNT and fall applications is 
because more N remains in the root zone for crop uptake; and 
(iii) year-to-year LSNT-based N rate diff erences are mainly due 
to variation in early-season precipitation and temperature.
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Among the most promising tools available for determining 

precise N requirements are soil mineral N tests (Schroder et 

al., 2000). Th e pre-side-dress nitrate test (PSNT) combined with 

a split application of N was proposed by Magdoff  et al. (1984) 

and has been found eff ective for determining if corn (Zea mays 
L.) will benefi t from side-dress N (Klapwyk and Ketterings, 2006; 

Bundy and Andraski, 1995). Th e PSNT can help reduce N loss 

while maintaining acceptable corn yields (Sogbedji et al., 2000; 

Meisinger and Delgado, 2002). Th e PSNT in the form of the late-

spring nitrate test (LSNT) was recommended for corn N fertiliza-

tion in Iowa (Blackmer et al., 1997). Th e LSNT protocol involves 

applying a nominal rate of N fertilizer before corn emergence fol-

lowed by measuring residual soil nitrate in the top 30 cm of soil 

during early crop growth and side-dressing additional fertilizer 

based on soil nitrate concentrations.

Although soil testing methods such as the LSNT are promis-

ing tools, adoption by farmers is limited because of little time 

between soil testing and fertilizer application; higher labor, equip-

ment, and soil sampling costs; and potential prediction errors 

in N application rates. Much of the LSNT-determined N rate 

variability is weather related. Using the agricultural system model 

LEACHMN, Sogbedji et al. (2001) concluded that economic 

optimum N rates were minimally aff ected by fi eld variability 

from drainage class but strongly aff ected by annual variation in 

early-season precipitation. Field results confi rm that plant avail-

able N is most strongly infl uenced by rainfall early in the grow-

ing season (Kay et al., 2006). Also, increasing soil temperature is 

usually associated with increasing soil organic matter decomposi-

tion (Kirschbaum, 1995), and thus higher plant available N can 

be expected during years with higher early-season temperature. 

Agricultural system models such as the Root Zone Water Quality 

Model (RZWQM) can accurately simulate variation among 

year-to-year crop yield and fi eld N dynamics due to fl uctuations 

such as weather after thorough calibration (Ma et al., 2007b; Li 
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et al., 2008; Th orp et al., 2007). Th ese models may help our 

understanding of N rate predictions under long-term weather 

scenarios (Magdoff , 1991; Sogbedji et al., 2001). Th erefore, 

application of thoroughly tested agricultural system models 

will increase our understanding of annual soil nitrate variation 

and help stimulate adoption of side-dress fertilizer manage-

ment operations such as the LSNT.

An experiment fi rst described by Jaynes et al. (2004) inves-

tigated the LSNT within a 366-ha subbasin of the tile-drained 

Walnut Creek watershed in Iowa. Th ey compared the LSNT 

to primarily fall applied N fertilizer treatments in adjacent sub-

basins. Th ese watershed data have been utilized previously for 

development, testing, and application of the agricultural sys-

tems models ADAPT and SWAT (Gowda et al., 2008; Saleh 

et al., 2007; Du et al., 2005). Also, Bakhsh et al. (2004a,b) 

applied RZWQM to a nearby fi eld within the Walnut Creek 

watershed that did not include the LSNT subbasin.

Agricultural system models continue to be used to quantify 

the management eff ects on nitrate fate. For example, ADAPT 

was used to evaluate the eff ect of timing and amount of N appli-

cation in south-central Minnesota and central Iowa (Nangia et 

al., 2008; Gowda et al., 2008); DRAINMOD-NII was used to 

evaluate the eff ect of drainage design and management (Luo 

et al., 2010); RZWQM was used to evaluate the eff ect of N 

application rates in central Iowa (Bakhsh et al., 2004a; Th orp 

et al., 2007); and RZWQM was used as part of a larger study 

of several management practices to briefl y evaluate the eff ect of 

soil testing in northeastern Iowa (Malone et al., 2007). Missing 

from this research is watershed-scale testing and application of 

RZWQM and thorough evaluation of the model simulated 

response to the LSNT compared to fall applied N fertilizer.

A common aspect of previous studies involving RZWQM 

is that the model was generally calibrated manually. Th is gen-

erally involves manually adjusting model parameters and then 

running long-term simulations to allow C/N pool sizes to 

equilibrate. Th is is performed in an iterative fashion to try to 

match model results with observed soil water, fi eld N dynam-

ics, and plant growth for the period after C/N equilibration 

(Hanson et al., 1999).

Automatic parameter estimation (calibration) programs 

such as PEST may be an improvement over manual calibra-

tion. Th ese methods specify an objective function based on 

data-model goodness-of-fi t where user-defi ned model param-

eters are automatically adjusted until the objective func-

tion reaches a minimum (e.g., Doherty, 2004; Doherty and 

Johnston, 2003). Using automatic calibration methods such 

as PEST helps provide an objective, defensible, and repeatable 

way to calibrate models with many parameters (Rose et al., 

2007). Robust optimization packages also usually allow much 

easier, effi  cient, and accurate model fi t to fi eld measurements 

than manual calibration (Doherty and Johnston, 2003). Nolan 

et al. (2010b) used PEST to calibrate RZWQM for conditions 

that did not include artifi cially drained soils.

Our objectives are to use fi eld data described by Jaynes 

et al. (2004) (i) to objectively calibrate RZWQM using the 

automatic parameter optimizer program PEST and compare 

the eff ects of the LSNT on nitrate leaching from RZWQM-

simulated and observed data and (ii) to use the optimized 

model to investigate the long-term LSNT eff ects on fi eld N 

dynamics compared to single spring and fall N applications, 

which includes investigating the eff ects of year-to-year weather 

variability on LSNT-determined N application rates.

Materials and Methods

Field Experiment
Figure 1 shows the Walnut Creek watershed located in central 

Iowa (41°55′ to 42°00′ N; 93°32′ to 93°45′ W). Weather and 

cropping patterns have been monitored within the 5130-ha 

watershed since 1991. Details of the location, geology, soils, 

climate, land use, and farming practices are found in Hatfi eld 

et al. (1999a) and the associated references. Details of the 

LSNT-treatment and control subbasins within the watershed 

are found in Jaynes et al. (2004); we briefl y describe them 

here. Crop cover for fi elds in each subbasin were determined 

by ground surveys (1991–1998), supervised classifi cation 

of Landsat photos (1998–1999; USGS, http://landsat.usgs.

gov), or cropland data layers (2000–2007; USDA National 

Agricultural Statistics Service, 2009). To avoid adding unnec-

essary complexity to the analysis and RZWQM simulations, 

we do not simulate fi elds with crops other than corn and soy-

bean [Glycine max (L.) Merr.] (e.g., alfalfa [Medicago sativa L.], 

oat [Avena sativa L.], and pasture).

Th e LSNT treatment was implemented for 4 yr (1997– 

2000) on 16 fi elds (300 ha) of a 366-ha subbasin within the 

larger watershed and designated TR1 to retain the terminol-

ogy of Jaynes et al. (2004). Simple corn–soybean rotations 

from 1991 through 2000 were practiced on 69% of the TR1 

area (TR1_CS for corn in 1997; TR1_SC for soybean in 

1997). Including three more fi elds with some years of con-

secutive corn before 1997 (Supplementary Table 1SI) repre-

sents 99% of TR1 long-term management. In 2001, several 

fi elds categorized as TR1_CS and TR1_SC planted a second 

consecutive year of corn (Fig. 2), which we assumed had little 

eff ect on our simulations.

Th e adjacent subbasins CN1 and CN2 were selected as con-

trols for a paired watershed research design. We use CN2 for 

Fig. 1. Walnut Creek watershed. Location of Walnut Creek water-
shed (WCW) within the state of Iowa (inset), and the location of the 
stream, district drains, discharge gaging stations, control subbasins 
(CN1 and CN2), and treatment subbasin (TR1) within WCW. From 
Jaynes et al. (2004).
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the calibration watershed for reasons listed below. Crop rota-

tions for 39 fi elds within CN2 (715 ha) were identifi ed. Corn–

soybean rotations from 1991 through 2000 were practiced on 

491 ha (69%) of CN2, which we categorized CN2_CS and 

CN2_SC. Including four more fi elds with some years of con-

secutive corn (Supplementary Table 1SI) represent 82% of 

CN2.. Fifty-four hectares of CN2 practiced simple corn–soy-

bean rotations through 1999 but changed in 2000 to continu-

ous corn, continuous soybean, or undetermined. Assuming 

this change had little eff ect on our simulations results in six 

rotations representing 89% of CN2 long-term management.

Farmers in CN2 were assumed to add N fertilizer in the fall 

at 165 kg N ha−1 before the 1999 corn planting seasons (1991–

1998) and 185 kg N ha−1 thereafter (Jaynes et al., 2004). When 

a second consecutive year of corn was planted, we assumed 200 

kg N ha−1 fertilizer application. Th e LSNT program consisted 

of applying 56 kg N ha−1 shortly before planting. Around late 

May to mid-June, soil samples were taken and analyzed for 

nitrate content to determine the required rate of N to apply 

by side-dressing. Nitrogen fertilizer rates were calculated using 

the formula y = 1.121 × 8 × (25 – x) (Blackmer et al., 1997), 

where x is the average nitrate concentration (mg N ha−1) in the 

soil, y is the N fertilizer rate in kg N ha−1, the factor 8 is con-

sidered a fi rst approximation for the conversion rate between 

fertilizer N application and resulting soil N concentration, 25 

is the required soil N concentration for full yield, and 1.121 

converts the recommendation from pound per acre to kilo-

gram per hectare. Th e total N rates determined with the LSNT 

(measured soil nitrate concentration, x) for 1997, 1998, 1999, 

and 2000 were 168, 118, 174, and 96 kg N ha−1. Rates and 

timing of N application for TR1 before 1997 and after 2000 

were assumed to be the same as the two control watersheds.

To confi rm that the LSNT program was meeting plant 

N requirements, 12 to 16 row check strips were strategically 

placed within a very small fraction of subbasin TR1 to deter-

mine corn yield under diff erent N application strategies. One 

strip received only the preplant application of approximately 

56 kg N ha−1 (MIN), whereas another received a nonlimiting 

N rate (>220 kg N ha−1; NLIM). A third strip received the 

LSNT rate. Details on the procedure to analyze corn response 

to LSNT in the Walnut Creek watershed are found in Karlen 

et al. (2005).

Th e fi elds within each subbasin were extensively drained by 

subsurface tiles that had been installed over the past 120 yr. 

Th e fi eld tiles drained into subsurface drainage district pipes 

that drained each subbasin. Th e partially submerged district 

drains were instrumented to measure fl ow rate as they emptied 

into Walnut Creek (Fig. 1) by simultaneously measuring water 

depth and velocity using Flowtote meters (Marsh-McBirney, 

Frederick, MD). Water samples were taken manually once a 

week at the fl ow gauge on each subbasin and automatically 

during runoff  events. All water samples were refrigerated until 

analysis. Nitrate was analyzed by quantitative reduction to NO
2
 

and measuring the NO
2
 concentration colorimetrically with a 

Lachat Autoanalyzer (Zellweger Analytics, Lachat Instrument 

Division, Milwaukee, WI). Th e method had a quantitation 

limit of 1.0 mg N L–1 as NO
3
. Flow-weighted average NO

3
 

concentrations were computed by summing the product of 

the weekly/daily NO
3
 concentration and total weekly/daily 

discharge.

RZWQM Description
Th e RZWQM simulates water infi ltration into the soil matrix 

using the Green-Ampt equation and water redistribution using 

the Richards’ equation. Soil hydraulic properties are described 

with a modifi cation of the Brooks-Corey equation. Tile drain-

age is simulated by the Hooghoudt’s steady state equation 

in RZWQM. Th ese hydrologic processes as implemented in 

RZWQM have been described elsewhere (e.g., Malone et al., 

2003; Ma et al., 2007a).

A comprehensive description of the carbon and nitrogen 

dynamics in RZWQM is found in Ma et al. (2001, 2007a); we 

describe the fi rst-order decomposition of soil organic C here:

r
i
 = –k

i
C

i 

where r
i
 is the decay rate of the ith pool (mg C kg−1 d−1); i is the 

soil organic C pool (RZWQM has fi ve soil organic C pools: 

slow surface residue, fast surface residue, fast humus, interme-

diate humus, and slow humus); C
i
 is the C concentration (mg 

C kg−1 soil); and k
i
 is a fi rst-order rate coeffi  cient (s d−1):

b a 2
aer heth h

p g 1

[ ]
 exp( )

[ ]
i i k k

k T E O
k f A P

h R T H

⎛ ⎞⎟⎜ ⎟⎜= −⎟⎜ ⎟⎜ ⎟⎜ γ⎝ ⎠
 [1]

where A
i
 is the rate constant for pool i, [O

2
] is O

2
 concentra-

tion in the soil water with assumption that oxygen in soil air 

is not limited (moles O
2
 per liter pore water), H is the hydro-

gen ion concentration (moles H per liter pore water), γ
1
 is the 

activity coeffi  cient for monovalent ions (1/γ
1

kh = 3.1573 × 103 

Fig. 2. Ratio of corn area to corn (c) and soybean (s) area in the three 
subbasins. TR1, CN2, and CN1 are the subbasin with the Late Spring 
Nitrate Test (LSNT) treatment, the southernmost control subbasin, 
and the northernmost control subbasin.



1714 Journal of Environmental Quality • Volume 39 • September–October 2010

if pH > 7.0, and 1/γ
1
kh = 1.0 if pH ≤ 7.0), kh is hydrogen ion 

exponent for decay of organic matter (= 0.167 for pH ≤ 7.0 

and = –0.333 for pH > 7.0), P
het

 is the population of aerobic 

heterotrophic microbes (no. of organisms per g soil, minimum 

50,000, default value 100,000), k
b
 is the Boltzman constant 

(1.383 × 10−23 J K−1), T is soil temperature (K), h
p
 is the Planck 

constant (6.63 × 10−34 J s), R
g
 is the universal gas constant (1.99 

× 10−3 kcal mol−1 K−1), E
a
 (= 15.1 + 12.3 U, U is ionic strength 

mole]) is the apparent activation energy (kcal mol−1), and f
aer

 is 

a soil aeration factor estimated from Linn and Doran (1984):

f
aer

 = 0.0075 Pθ; Pθ ≤ 20 

f
aer

 = −0.253 + 0.203 Pθ; Pθ < 20 Pθ < 59 

f
aer

 = 41.1 exp(−0.0625 Pθ); Pθ ≥ 59 

where Pθ is water-fi lled pore space.

A fraction of decayed organic materials is transferred 

between carbon pools: slow residue to intermediate residue, 

fast residue to fast humus, fast humus to intermediate humus, 

and intermediate humus to slow humus. Th is decay process is 

described in detail in Ma et al. (2001), and these four trans-

formation coeffi  cients were calibrated along with the recom-

mended initialization procedure suggested by Ma et al. (2010). 

Nitrogen conservation is observed during organic matter 

decay, and transformation is based on the C-to-N ratio of each 

carbon pool (e.g., fast humus). Nitrogen is released as NH
4
 

during the decay process and may be nitrifi ed to NO
3
. Figure 3 

shows the eff ect of temperature and water-fi lled pore space on 

the decay rate coeffi  cient (k
i
) for fast humus, where k

i
 increases 

with increasing temperature and is highest with Pθ of 59% (see 

Eq. [1]).

Model Input and Optimization
Meteorological model input included daily minimum and 

maximum temperatures, wind speed, solar radiation, relative 

humidity, and hourly precipitation. Nitrate and NH
4
 ions 

were added to precipitation at concentrations of 1.0 and 0.5 

mg L−1 (0.23 and 0.39 mg N L−1), which are the approximate 

average annual concentrations for Iowa (from the National 

Atmospheric Deposition Program website, http://nadp.sws.

uiuc.edu/). To reduce spatial variation eff ects caused by select-

ing one gauge for rainfall input, we used the median weekly 

rainfall as the most representative gauge for rainfall input to 

RZWQM from several gauges throughout the watershed 

(e.g., Hatfi eld et al., 1999b). Th e “representative” rain gauge 

was used for each week’s RZWQM breakpoint rainfall input. 

Solar radiation and humidity were checked using procedures 

described by Allen (1996). Th ese included comparing hourly 

relative humidity against 100%. Daily solar radiation was com-

pared against clear sky radiation and monthly solar radiation 

compared to temperature estimated radiation. From the two 

Walnut Creek watershed weather stations where data were col-

lected, the radiation and humidity values that best refl ected 

these quality checks were used for RZWQM input. In addi-

tion, solar radiation was included from the Iowa Environmenal 

Mesonet station west of Ames, IA (http://mesonet.agron.

iastate.edu; 42°1′ N, 93°47′ W). Th e weather data quality 

control procedure is described more thoroughly in Malone et 

al. (2010).

Th e main components of RZWQM include hydrology, 

nutrient dynamics, and plant growth. Most of the input param-

eters were the same or similar to Th orp et al. (2007) and/or Ma 

et al. (2008). Parameters that were adjusted from these values 

or RZWQM default are listed in Table 1 and Supplementary 

Table 2SI. “Adjusted parameters” (e.g., saturated hydraulic 

conductivity, Ksat; Supplementary Table 2SI) were manually or 

PEST adjusted before the fi nal model optimization described 

below; brief justifi cations for the fi nal values are reported in the 

table comments. One reason important soil parameters such 

as Ksat and air-entry pressure were not included in the formal 

PEST optimization is that the RZWQM solution to Richards’ 

equation failed to converge with certain combinations of soil 

parameters. Numerical approximation is required to solve 

Richards’ equation due its nonlinearity, the complex nature of 

pressure head–hydraulic conductivity–water content relations, 

and the heterogeneous nature of soil systems. A robust solution 

to Richards’ equation is desirable but not currently possible 

for certain reasonable sets of constitutive relations, parameter 

values, and environmental conditions (e.g., Miller et al., 1998).

Th e subbasin CN2 was used for optimization because it 

had similar annual proportions of corn and soybean as TR1 

in the LSNT treatment years (1997–2000; Fig. 2) and we 

wanted to avoid using the LSNT subasin (TR1) for calibra-

tion. Optimized parameters determined from CN2 were used 

for TR1; thus only management (N application and crop rota-

tions) changed among RZWQM simulated subbasins.

Data have been collected on all three subbasins through the 

present, but we terminate the calibration and testing at July 

2001 (2001.5) because several fi elds transitioned to continu-

ous corn in 2001 (Fig. 2). If we continued model testing after 

2001.5, several more fi elds would have to be simulated and 

Fig. 3. Decay rate coeffi  cient (k
i
 × 100) for fast humus as a function 

of temperature and water fi lled pore space of soil, estimated using 
Eq. [1] (contour intervals of 0.2). Constant values are used for Eq. 
[1] variables except temperature and water fi lled pore space. (e.g., 
P

het
 = 1 × 10−6, A

i
 = 2.5 × 10−7, U = 0.1, [O

2
]*[Hkh*γkh]−1 = 5 × 10−3; other 

constants are listed in text).
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composited, which for our objectives would unnecessarily 

complicate the analysis. We use a decimal system to briefl y des-

ignate monthly results and to force January and December to 

have their fractional parts as 0.0 and 0.9. For example, 2001.5 

is July 2001 and 2001.9 is December 2001 [2001+ (7 – 1)/12 

= 2001.5; 2001+ (12–1)/12 = 2001.9].

We used the parameter estimation software PEST for 

RZWQM optimization in conjunction with the PEST utility 

software PAR2PAR and TSPROC (Doherty, 2004; Doherty 

and Johnston, 2003). In estimating model parameter values, 

PEST minimized a multicriteria objective function composed 

of four components representing diff erent observation groups. 

Th ese were the summed weighted squared diff erences between 

observed and RZWQM simulated monthly water quality 

values from 1993 to 2001.5 and 1997 to 2000 annual corn 

yield, specifi cally (i) monthly N loss in drain fl ow, (ii) monthly 

drain fl ow amount, (iii) monthly fl ow-weighted nitrate con-

centration (FWNC) in drain fl ow, and (iv) annual corn yield 

from the nonlimiting and minimum (NLIM and MIN) N 

treatments. Th e use of multiple criteria must be accompanied 

by a suitable selection of relative weights (w
i
) when calculating 

the overall objective function. Weights were chosen so that no 

criterion was allowed to dominate the objective function: 2.0, 

2.0, 1.0, and 0.015 were used for N loss, drain fl ow, FWNC, 

and corn yield, respectively. We also removed monthly N 

loss, drain fl ow amount, and FWNC from the optimiza-

tion for months with very low drain fl ow (e.g., <1.0 mm) by 

selecting a weighing function of zero for those months. Th e 

Gauss–Marquardt-Levenberg optimization methodology that 

underlies PEST and similar programs has been criticized for 

being too easily trapped in local objective function minima. 

Using an objective function that combines multiple crite-

ria and suitable relative weights reduces the problem of local 

minima (Doherty and Johnston, 2003). Th e objective function 

[Φ(β)] based on parameter set (β) can be summarized as

( )
1

2
nl, nl, nl,

1

2
2

df , df , df ,
1

3
2

nc, nc, nc,
1

4
2

cy, cy, cy,
1

[ ( )]

[ ( )]

[ ( )]

[ ( )]

n

i i i
i

n
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i

n
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n
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i
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w P O
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=

=

Φ β = −

+ −

+ −

+ −

∑

∑

∑

∑
 

where subscript i = monthly or annual ith observation, O = 

observed values, P = simulated values, w = observation weights, 

subscript nl = N loss, subscript df = drainfl ow, subscript nc = 

fl ow-weighted nitrate concentration, subscript cy = corn yield, 

and n1–4 = number of observations associated with each obser-

vation group.

Input parameters formally calibrated by PEST were soil 

root growth factors for corn at four depths (15–30, 30–45, 

45–60, and 60–90 cm), the four interpool transformation 

coeffi  cients for the organic matter pools, the lateral hydraulic 

gradient, and the pore-size distribution index for the surface 

three horizons. Model parameters for diff erent components 

(crop growth, hydrology, N dynamics) were optimized simul-

taneously because they interact. For example, N uptake by corn 

is often the largest component of the annual nitrogen budget, 

and N uptake is sensitive to both N mineralization and root 

growth factors.

We used the utility PAR2PAR together with PEST to 

keep root growth factors for deeper layers less than shallower 

layers, to maintain pore size distribution index within a factor 

of 0.7 to 1.4 for adjacent soil layers, and to adjust soil param-

eters that are calculated on the basis of pore size distribution 

index (e.g., unsaturated hydraulic conductivity parameters). 

We used the PEST utility TSPROC to process the daily 

RZWQM simulated runoff  and tile drainage from the corn 

and soybean fi elds of the control subbasin (CN2_CS and 

Table 1. PEST-calibrated parameters.

Parameter Value Comments

slow r to intermediate h 0.86 Interpool organic matter transformation coeffi  cients; r is residue, h is humus. 
More detail provided by Thorp et al. (2007) and the associated references.fast r to fast h 0.40

fast h to intermediate h 0.43

intermediate h to slow h 0.74

LHG 3.62E-06 The LHG is the lateral hydraulic gradient which controls fl ow out of the system 
below the subsurface drain (Ma et al., 2007a).

SRGF 15–30 0.81 SRGF is corn soil root growth factors for 15–30, 30–45, 45–60, 60–90 cm; the 
values for soybean were maintained as in Thorp et al. (2007).30–45 0.23

45–60 0.10

60–90 0.01

PSD 0–2 0.19 PSD is pore size distribution index for the four diff erent soil depth horizons (0–2, 
2–20, 20–130, and 130–268 cm); values are within range listed by Rawls et al. 
(1982).

2–20 0.20

20–130 0.15

130–268 0.08

N2 0–2 2.19 N2 is the unsaturated hydraulic conductivity curve slope for the four diff erent soil 
depth horizons; N2 = a2+2, where a2 is the pore size distribution index; Malone 
et al. (2004); Russo and Bresler (1980); Kutilek and Nielsen (1994).

2–20 2.20

20–130 2.15

130–268 2.08
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CN2_SC) into proportional monthly composite N loss in 

drain fl ow and drain fl ow amount (DFX) using the formula

1

DFX ( )
n

i i i
i

T RO f
=

= +∑  [2]

where T is daily tile fl ow amount (cm) or N loss in tile fl ow (kg 

N ha−1), RO is daily runoff  amount (cm) or N loss in runoff  (kg 

N ha−1), i represents the crop rotation (e.g., CN2_CS or CN2_

SC), n is the number of rotations (e.g., 2), and f is the fraction 

of subbasin area in a given rotation (0.526 for CN2_SC and 

0.474 for CN2_CS). Note that the fractions were determined 

as CN2 area in SC or CS divided by sum of area in SC and 

CS [e.g., 258/(258+233)]. Monthly values for DFX were then 

computed followed by monthly FWNC in drain fl ow {[(N 

loss in drainfl ow, kg N ha−1) ×10]/ drainfl ow amount, cm}. We 

use the term drain fl ow as the sum of subsurface (tile) drain-

age and runoff  because the watershed samples included both, 

which was partly due to the many surface inlets into the sub-

surface drainage system. Annual simulated runoff  was sensitive 

to snowmelt; therefore, before the fi nal formal PEST optimi-

zation we adjusted the fraction of infi ltrated snowmelt to 0.7 

(default was 0.8) to achieve accurate simulated annual runoff  

compared to runoff  calculated using hydrograph separation at 

the exit of the 5130-ha watershed.

To summarize, our optimization scheme involved:

1. PEST adjusted the user-defi ned model parameters;

2. PAR2PAR calculated the appropriate RZWQM 

parameters based on PEST parameter adjustments in 

step 1;

3. RZWQM input fi les were updated for the six scenarios 

(CN2_CS, CN2_SC, NLIM_CS, NLIM_SC, MIN_CS, 

MIN_SC);

4. RZWQM was run for each scenario from 1985 to 2001;

5. daily model output for nitrate N loss in tile fl ow, N loss 

in runoff , tile fl ow amount, and runoff  amount was 

converted to monthly values for CN2_CS and CN2_SC 

using the PEST utility TSPROC;

6. monthly simulated values of step 5 were used to 

proportionally compute composite N loss in drain fl ow 

and drain fl ow amount using Eq. [2];

7. the weighted objective function was computed; and

8. steps 1–7 were repeated until optimization criteria met. 

Nolan et al. (2010a, b) discusses application of PEST to 

optimize RZWQM in more detail.

One of the advantages of optimizing RZWQM parameters 

using PEST is effi  ciency. Formal calibration of 12 parameters 

required less than 300 parameter perturbations. Running the 

six scenarios for a parameter set requires about 15 min or 75 

h for 300 parameter perturbations. Nolan et al. (2010a) dis-

cusses further application of PEST with RZWQM simulations 

such as parameter sensitivity analysis and uncertainty analysis 

of RZWQM predictions.

Model Performance and Testing
Compositing only two RZWQM simulated rotations for 

PEST optimization of water quality and hydrology output 

(CN2_SC and CN2_CS) resulted in acceptable calibrations 

and covered 69% of the watershed management. Including 

more fi elds would have added considerable time and complex-

ity to the PEST optimization. To test calibrated model per-

formance however, four to six rotations per watershed were 

composited (Supplementary Table 1SI). Two rotations for each 

subbasin were simple corn–soybean rotations with corn in even 

or odd years. We composited the daily simulated tile drainage 

and runoff  from each subbasin proportionally using a modifi -

cation of Eq. [2] and then computed the monthly value.

To evaluate the calibrated RZWQM simulated hydrology, 

nitrate loss, and nitrate concentration for 1993 to 2001 across 

the two subbasins, we use the quantitative statistics Nash–

Sutcliff e effi  ciency (EF), percent bias (PBIAS), and ratio of the 

root mean square error to the standard deviation of measured 

data (RSR):

( )2
=1

1
RMSE

n

i i
i

P O
n

= −∑  [3]

2 2

1 1

EF 1 ( ) ( )
n n

i i i
i i

P O O O
= =

⎡ ⎤
⎢ ⎥= − − −⎢ ⎥
⎣ ⎦
∑ ∑  [4]
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1 1

PBIAS ( )100 ( )
n n

i i i
i i

O P O
= =

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎣ ⎦
∑ ∑  [6]

where Ō is the mean observed values, P
i
 is the model estimated 

values, O
i
 is the observed values, and n is the number of data 

pairs. Model simulations can be considered satisfactory under 

a monthly time step if (Moriasi et al., 2007): EF > 0.5, RSR 

< 0.7, PBIAS is within ±25% for streamfl ow, and PBIAS is 

within ±70% for N loss. Th e values of RMSE and EF when 

model estimates perfectly match observed data are 0 and 1.0, 

respectively. An EF value less than zero indicates that the aver-

age of observed measurements was a better estimator than the 

model.

We will only briefl y discuss hydrology and crop simula-

tions. Our main purpose in the model testing is to determine 

if RZWQM responds to LSNT treatments compared to fall 

N application. Th erefore, we briefl y report and discuss model 

comparisons to observed data such as the individual treatment 

drain fl ow, crop production, and nitrate loss, but the observed 

and RZWQM simulated FWNC diff erence between LSNT 

and control watershed is the most important comparison.

One method to examine paired watershed data was 

described by Jaynes et al. (2004, 2001). We modifi ed this 

to determine if RZWQM responded to LSNT (TR1) com-

pared to the control watershed (CN2). Our adaption of this 

method involved fi tting a Gompertz function to both the 

RZWQM and the observed diff erence in monthly FWNC 

between the LSNT and control subbasin. A Gompertz 

function describes a time series with asymptotic decline or 
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growth, nitrate concentration diff erences in our case. We 

also included an autoregressive (AR) residual component to 

correct for the eff ects of residual autocorrelation. Nonlinear 

regression was used to fi t the Gompertz function to the 

nitrate concentration diff erences. A lag1 residual AR com-

ponent was added to this trend and the combined model 

simultaneously fi tted to the data using an iterative least 

squares method and “Fair” weighting to reduce outlier eff ects 

(e.g., Heiberger and Becker, 1992). Residual lag values were 

assumed missing at the start of the time sequence and after 

breaks in the time series caused by periods of low drain fl ow 

(<1 mm mo–1).

Th e Gompertz function with the AR residual component 

can be described by the following:

LSNT – control =  

A + Cexp{−1exp[–b(x – m)]} + a1r
(x-1)

 + r
x
 [7]

where A is the upper boundary, C is the diff erence between the 

lower and upper boundary, b is the rate of monthly N concen-

tration decline (mg N L−1 mo−1), x is the number of months 

since December 1992 (in January 1993, x = 1), m is the month 

of maximum decrease (x = 50 to 70), a1 is the lag1 residual 

coeffi  cient, and r is the residual or error.

Long-Term RZWQM Simulations
Th e fi eld experiments for this research compared the LSNT 

protocol to primarily fall-applied N fertilizer (Jaynes et al., 

2004). We used the calibrated and tested RZWQM to study 

long-term eff ects of three N treatments: (i) LSNT with a single 

50 kg N ha−1 application at corn planting followed by soil test-

ing to determine a side-dress N application rate 35 d after corn 

emergence (about mid-June); (ii) a single fall application of 

150.7 kg N ha−1 about 40 d after soybean harvest (about mid-

November); (iii) a single spring application of 150.7 kg N ha−1 

at corn planting (2 May). Th e 150.7 kg N ha−1 rate was chosen 

for fall and spring application rates because it was the average 

RZWQM determined LSNT rate from the long-term simula-

tions. Fertilizer was applied as injected anhydrous ammonia. 

Historical weather data near the watershed were used for the 

simulations (1 Jan. 1960 through 31 Dec. 2005). Although 

the model runs began in 1960, N mass balance and regression 

analysis used only the model results from 1970 through 2005, 

which allowed time for soil C/N initialization.

To help improve our understanding of the relationship 

between long-term LSNT rate and weather variables before 

soil testing, multivariate regression was performed using tem-

perature and rainfall as predictors and LSNT rate determined 

by RZWQM from 1970 through 2005 as the dependent vari-

able. Th e regression analysis included power and interactive 

weather predictors (e.g., temperature × precipitation, tem-

perature0.1, precipitation3). Power regression was used because 

weather variables such as temperature and precipitation may 

have a nonlinear eff ect on N application rate determined from 

soil testing. Th e interaction terms were included because vari-

ables such as precipitation may aff ect soil determined N rate 

diff erently at high and low temperature. We used stepwise, 

k-fold cross-validation, and leave-one-out cross-validation for 

selection of variables. Th e fi nal set of variables is mechanisti-

cally plausible and tested using both k-fold and leave-one-out 

cross-validation.

Th e k-fold was used in the event of serial correlation of 

weather variables used in the regression (temperature and 

precipitation), where the data were split into 6 blocks of 30 

observations for model calibration and 6 omitted values for 

model validation. Th e data used for cross-validation were 1970 

to 2005 RZWQM predicted N rate and the predictands for 

the regression equation (see predictand defi nition below). Th e 

equation with the fi nal set of included variables produced the 

lowest predictand residual sum of squares (cross-validation 

PRESS statistic) and lowest mean square error (MSE) for all 

the steps in the regression procedure. Predictand is the pre-

dicted value for the observations omitted from the calibration 

blocks. Th e 6 validation blocks for k-fold were 1970 to 1975, 

1976 to 1981, 1982 to 1987, 1988 to 1993, 1994 to 1999, 

and 2000 to 2005. Th is cross-validation technique is described 

more thoroughly in Malone et al. (2009).

Multivariate regression, nonlinear regression, and cross-

validation were performed using SAS v. 9.1 (SAS Institute, 

Cary, NC).

Results and Discussion

Model Testing: Yield
Corn yield was simulated within 500 kg ha−1 (±5%) of 

observed values for 11 of 12 observations. Th ese corn yield 

calibration scenarios included the three diff erent N applica-

tion types (LSNT, NLIM, MIN) over the 4-yr period of the 

LSNT treatment (1997–2000; Fig. 4a). Th e average observed 

and RZWQM annual yield diff erence between minimum 

(MIN) and LSNT-determined N application were 994 and 

1234 kg ha−1, confi rming that RZWQM corn yield predictions 

responded to N application rates. Th e least-accurate simula-

tion was for 1998 NLIM, which is underpredicted by about 

1200 kg ha−1. Th e 1998 June rainfall was the second-highest 

monthly precipitation next to the fl ood year of July 1993. Both 

July 1993 and June 1998 received more than 30 cm of pre-

cipitation. Th e poor RZWQM-predicted corn yield in 1998 is 

attributed to simulation of excessive water logging.

Fig. 4. Annual crop yield. (a) Observed and Root Zone Water Quality 
Model (RZWQM) simulated corn yield. The three treatments are nonlimit-
ing N fertilizer applied (NLIM; 220 kg N ha−1 for RZWQM), Late spring 
nitrate test (LSNT), and minimum application of 56 kg N ha−1, MIN. (b) 
Observed (OBS) crop yield from USDA National Agricultural Statistics 
Service for Story County, Iowa; RZWQM simulations for fall N application.
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Th e crop yield simulations from 1990 to 2000 suggest that 

RZWQM accurately responded to yearly weather eff ects (Fig. 

4b). Th e simulated yield is presented along with the average 

annual crop yield for Story County, Iowa (USDA National 

Agricultural Statistics Service, 2009). Among the least-accurate 

simulations was 1998 corn yield, which was underpredicted 

by about 1000 kg ha−1 (Fig. 4b). Th e soybean yield was simu-

lated fairly well, with the largest discrepancy in 1993, where 

yield was overpredicted by 632 kg ha−1 (Fig. 4b). Th e simu-

lated and observed corn yield in 1993 was very low because of 

excessive rain (64 cm precipitation for May–July); unlike the 

RZWQM–maize model, the RZWQM–soybean model does 

not simulate water logging.

Model Testing: Drain Flow
Th e annual average simulated and observed drain fl ows for 

the three watersheds were within 3 cm of each other (1993–

2001.5; Table 2, Fig. 5). Th ese simulations showed accept-

able model indicators with PBIAS <16%, RSR <0.42, and EF 

>0.80 (Table 2). Th e EF is greater than the evaluation data of 

Th orp et al. (2007; EF = 0.78), where the management was 

better known and the soil more homogenous. We adjusted the 

snowmelt infi ltration factor to optimize surface runoff , which 

results in good simulated average annual runoff  of 5.4 cm with 

an EF of 0.86 for 1992 through 2001; average observed runoff  

was 5.6 cm (more detailed runoff  results not shown).

For the most part, the model adequately responded to 

monthly drain fl ow with an EF of 0.62 and 0.84 for TR1 and 

CN2 (Table 2). Supplementary Fig. 1SI shows TR1 monthly 

drain fl ow; note that TR1 had the lowest EF. An EF of 0.5 can 

be considered acceptable for monthly drain fl ow (Moriasi et 

al., 2007).

Model Testing: Nitrogen
Th e annual and monthly N loss in subsurface drain fl ow was 

simulated acceptably for TR1 and CN2 with PBIAS within 

±20%, EF >0.5, and RSR <0.7 (Table 2; Fig. 5). Th e annual 

and monthly FWNC in subsurface drain fl ow showed little 

bias (< ±11%). But the EF was <0.1 and the RSR was >0.9 

for both watersheds (Table 2). Although the EF is low, it is 

higher than other recent RZWQM evaluations where the spe-

cifi c management was more precisely known and soils more 

homogenous (e.g., Th orp et al., 2007; Li et al., 2008). Despite 

low EF values, Li et al. (2008) and Th orp et al. (2007) con-

cluded that the calibrated model was acceptable for estimat-

ing the relative eff ects of diff erent management under diff erent 

conditions on nitrate loss in subsurface drainage.

Th e annual and monthly FWNC simulations with the 

lowest EF was CN2 (Table 2) and among the least-accurate 

simulated FWNC for this watershed was 1996.8 (Fig. 5). 

Although the N loss and FWNC were underpredicted in 

1996.8 for TR1, CN2 appears the more inaccurate (Fig. 5). 

We simulated spring N application for all watersheds in 1997 

rather than fall 1996 applications because of the wet condi-

tions (Jaynes et al., 2004). Some fi elds may have received fall N 

application, which would increase the simulated FWNC and 

N loss. Th e observed FWNC and N loss suggest that CN2 had 

management that resulted in higher N loss than TR1.

Another poorly simulated FWNC for both watersheds was 

1999.8 (Fig. 5). Th e observed and simulated drain fl ow was 

<3 cm in 1999.8 (Fig. 5). For the most part, the poor simu-

lated FWNC was caused by the highest monthly drain fl ow of 

1999.8 to be simulated snowmelt in 2000.08 (February 2000) 

when the monthly simulated FWNC was zero (Supplementary 

Fig. 1SI).

Model Testing: Nitrate Concentration Diff erence 

between LSNT and Control Watershed (TR1-CN2)
Figure 6 shows the monthly time series of paired nitrate con-

centration diff erences for the watersheds. Th e Gompertz func-

tion with the AR residual component accounted for more than 

70% of the variation in observed and RZWQM simulated 

concentration diff erences (Supplementary Table 3SI). Figure 

7 also shows that for the most part, annual RZWQM simu-

lations responded to FWNC diff erences compared with the 

observed diff erences (R2 = 0.62). Th e poorest simulated annual 

diff erence was because snowmelt in 2000.08 drives the annual 

RZWQM simulated FWNC; therefore, little simulated dif-

ference was found between the two subbasins. Th e 2000.08 

Table 2. Statistics summary (1993–2001.5).†

Value Units
CN2 CN2 CN2 TR1 TR1 TR1

drainfl ow FWNC N loss drainfl ow FWNC N loss

Annual

PBIAS unitless −12.23 13.33 −1.57 −9.39 3.29 −11.26

RSR unitless 0.30 1.44 0.33 0.31 0.99 0.60

RMSE ‡ 4.77 4.01 5.15 5.33 2.45 9.03

EF unitless 0.91 −1.08 0.89 0.90 0.03 0.64

RZWQM ‡ 22.83 12.39 27.21 22.72 11.53 25.36

OBS ‡ 20.35 14.29 26.79 20.77 11.92 22.80

Monthly

PBIAS unitless −12.32 11.56 0.20 −9.97 1.54 −9.19

RSR unitless 0.40 1.09 0.45 0.61 0.98 0.61

EF unitless 0.84 −0.20 0.80 0.62 0.04 0.63

† CN2, southern-most control subbasin; TR1, subbasin with the late-spring nitrate test treatment; FWNC, fl ow-weighted nitrate concentration; EF, Nash–

Sutcliff e effi  ciency; PBIAS, percent bias; RMSE, root mean square error; RSR, ratio of the RMSE to the standard deviation of measured data  RZWQM, 

Root Zone Water Quality Model; OBS, average observed.

‡ drainfl ow, cm; FWNC, mg N L−1; N loss, kg N ha−1.
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FWNC diff erence is not shown on Fig. 6 because the observed 

drain fl ow for CN2 was <1 mm for this month. Th e criteria for 

an observation to be included in the monthly analysis were that 

all three simulated and observed subbasins produce more than 

1mm/month of drain fl ow.

One notable item for the period before implementation 

of the LSNT is that RZWQM overpredicted the FWNC dif-

ference in TR1-CN2 (Fig. 6, 7). From our knowledge of the 

watershed management, TR1 should have a somewhat higher 

annual FWNC than both CN2 and CN1 because it averages 

58% of area in corn from 1992 through 1996, whereas CN1 

and CN2 averaged <52% (Fig. 2). Th is suggests that soil and/

or N application rate and/or timing are diff erent between TR1 

and CN2.

After 1998.3, the 95% confi dence bands for the 

Gompertz function did not include the null hypothesis that 

the RZWQM simulated concentration diff erences were equal 

to the averages before LSNT implementation, which indi-

cates a signifi cant decrease in TR1 nitrate concentration due 

to the LSNT treatment (0.64 mg N L−1 for TR1-CN2; Fig. 

6b). Jaynes et al. (2004) reported similar timing for observed 

diff erences. Our observed 95% confi dence bands did not go 

above −2.0 (TR1-CN2) after 1998.25 (results not shown). 

Th us, as Jaynes et al. (2004) reported for the observed data, 

for the most part the RZWQM simulated nitrate concentra-

tion coming from LSNT-treated watershed can be considered 

signifi cantly lower than nitrate concentration coming from 

the control watershed after the latter half of 1998. Th erefore, 

Fig. 5. Annual observed (OBS) and Root Zone Water Quality Model 
(RZWQM) predicted nitrate concentration, drain fl ow, and nitrate 
loss from the two watersheds. The annual values are presented from 
mid-October to mid-October. For example, 2000.8 include 16 October 
2000 to 16 October 2001. TR1 and CN2 are the subbasin with the 
LSNT treatment and the southernmost control subbasin.

Fig. 6. Monthly nitrate concentration diff erences (conc. diff .) between 
late spring nitrate test (LSNT) and control subbasin. The gray error 
bars are the 95% confi dence limits. Data omitted from analysis if 
observed or RZWQM simulated drainfl ow <1 mm for month for CN1, 
TR1, or CN2. TR1, CN1, CN2, and AR are the subbasin with the LSNT 
treatment, the northernmost control subbasin, the southernmost 
control subbasin, and autoregressive.
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RZWQM is a promising tool for predicting the water quality 

eff ects of LSNT implementation in watersheds.

Th e 95% confi dence bands from the simulated diff erences 

approach zero after 1998.5 partly because of runoff  or snow-

melt (e.g., 2001.25) the preceding month. High simulated 

runoff  or snowmelt results in a high residual value between the 

RZWQM value and the Gompertz function (e.g., 2001.17; 

Fig. 6). Th is in turn results in a high upper confi dence band the 

following month due to the high lag1 autoregressive residual 

component. For simplicity, we did not include simulated base-

fl ow in our drainfl ow computations and RZWQM predicts 

nearly no N loss under runoff . Th e observed watershed mea-

surements on the other hand included basefl ow, which would 

tend to show diff erences between treatments.

Another reason for the high upper confi dence bands after 

1998.5 was that RZWQM-simulated nitrate concentration 

diff erences tend to be lower than observed in the spring and 

summer and higher than observed in the fall and winter. Th ese 

simulated diff erences also result in a high residual error with 

Eq. [7] (r
x
). For example, RZWQM simulated concentration 

diff erences between 1998.75 through 1999.17 are much higher 

than observed (and Eq. [7] predicted), whereas diff erences 

from 1999.3 through 1999.5 are much lower than observed 

and much lower than Eq. [7] predicted (Fig. 6). A high r
x
 

component of Eq. [7] for a specifi c observation results in a 

wide confi dence interval for that observation. Overpredicted 

winter nitrifi cation by RZWQM was previously reported 

(Ma et al., 2007b; 1998). Th is causes RZWQM to simulate 

deeper peak soil nitrate than fi eld observations for the spring–

summer when N fertilizer is fall applied (Malone et al., 2007). 

Th erefore, RZWQM simulates acceptable annual diff erences 

between LSNT N applications and fall N applications except 

when runoff  and snowmelt are driving annual FWNC (e.g., 

1999.8; Fig. 6, 7); however, the timing of monthly simulated 

diff erences are less accurate than desired.

Application of the Tested Model: Long-Term 

LSNT Treatment Eff ect
We used the calibrated model to simulate the average 1970 to 

2005 plant available nitrogen (NH
4
 and NO

3
) budget for three 

treatments: LSNT, average LSNT rate applied at planting, and 

average LSNT rate applied in the fall after harvest (Table 3). 

We used the specifi c LSNT determined rate each year for the 

LSNT simulations; the average of these variable RZWQM sim-

ulated LSNT determined rates from 1970 to 2005 was 150.7 

kg N ha−1. Th ese simulations indicate that LSNT lost 1.8 kg 

ha−1 less N (∼8%) in tile drainage than the single spring appli-

cation with <1% corn-yield diff erence (Table 3). Th e simulated 

tile drainage N diff erence between LSNT and single fall appli-

cation was much larger at 6.9 kg N ha−1 with about 1% corn 

yield diff erence. Th e N budget suggests that LSNT has slightly 

greater N uptake by crops than fall or single spring applications 

(1.4–5.4%). Th is contributes to substantially less percentage N 

loss in tile drainage (8.8 to 33.8%) due to more N remaining 

in the root zone for crop N uptake during the growing season 

under LSNT. Similarly, Malone and Ma (2009) reported that 

4% greater crop N uptake results in 30% less N in subsurface 

drainage in northeastern Iowa. In contrast to these modeling 

results, the analysis on the fi eld data from this study did not 

quantify the water quality benefi t of soil testing compared to 

single spring N applications (e.g., Jaynes et al., 2004).

We used the same long-term average N rate for the three 

treatments. Th e average annual rate may diff er, however, 

between corn fi elds with soil testing and fi elds with no soil 

test. If average annual N rates were lower for LSNT, N loss 

would be less. In the Corn Belt, for example, about 17% of 

corn acres were tested for soil nitrogen during 1996 to 2001. 

About 4% less nitrogen was applied on those fi elds than the 

average for corn fi elds not tested (Kim and Quinby, 2004). In 

Iowa, about 6% less nitrogen was applied to fi elds with soil 

N tests during 1996 to 2005 (USDA  Agricultural Resource 

Fig. 7. Annual fl ow-weighted nitrate concentration (FWANC) diff er-
ences between the late spring nitrate test treatment (LSNT; TR1) and 
southernmost control subbasin (CN2).

Table 3. Root Zone Water Quality Model (RZWQM) simulated average annual plant available N budget (NO
3
 and NH

4
) for three treatments (Trt) from 

1970 to 2005 (kg N ha−1).†

Trt Nbal‡§ immob‡ mineral‡ Ntile‡ Nlat‡ fi x‡ runoff ‡ denit‡ upt‡ appli‡ begin‡ end‡

LSNT 0.4 32.0 116.3 20.4 6.3 79.2 0.3 0.9 223.6 75.4 161.0 89.8

Fall 0.2 31.9 113.3 27.3 8.2 80.0 0.4 1.3 211.5 75.4 246.4 200.1

Spring 0.3 32.0 115.5 22.2 7.0 79.5 0.4 0.4 220.3 75.4 149.0 106.9

† Each treatment is the average of two rotations (corn in odd years and corn in even years). Average rain N was 10.9 kg N ha−1 yr−1 (National Atmospheric 

Deposition Program website, http://nadp.sws.uiuc.edu/).

‡ Nbal, N balance; immob, immobilization; mineral, mineralization; Ntile, N in subsurface tile line; Nlat, N in lateral fl ow below tile line; fi x, fi xation; runoff , 

N in runoff ; denit, denitrifi cation; upt, N uptake by crops; appli, N application rate; begin, soil nitrate at beginning of RZWQM simulation (31 Dec. 1969); 

end, soil nitrate at end of RZWQM simulation (31 Dec. 2005).

§ appli + fi x + mineral + rain + begin/36 – upt – denit – runoff  – Nlat – Ntile – immob – end/36 = Nbal



Malone et al.: Soil-Test N Recommendations Using RZWQM Simulations  1721

Management Survey, http://www.ers.usda.gov/Data/ARMS/

app/Crop.aspx). Small changes in nitrogen-containing fertil-

izer use (e.g., adjusted according to annual soil testing) may 

substantially reduce nitrate delivery to the Gulf of Mexico 

(McIsaac et al., 2001).

Although lower N fertilizer rates are often recommended 

with the LSNT, implementing the program within the Walnut 

Creek watershed costs about $5 ha−1 yr−1 (Saleh et al., 2007). 

Th is additional cost partly explains why only about 12% 

of corn fi elds in Iowa were tested for soil nitrogen in 2005 

(USDA Agricultural Resource Management Survey, http://

www.ers.usda.gov/Data/ARMS/app/Crop.aspx). Part of the 

higher LSNT cost is due to soil sampling (Saleh et al., 2007). 

An improved understanding of the year-to-year variability of 

soil mineral N could lead to a reduced need for soil testing and 

help increase adoption of side dressing.

To explore the relationship between LSNT rate and weather 

variables before soil testing, we developed the following cross-

validated equation that accounts for 90% of the variation in 

1970 to 2005 RZWQM-simulated annual LSNT rate (Nrate; 

Fig. 8):

Nrate = 1992.7 + 0.3704×etemp×eprecip  

         – 1406.36×etemp0.1 – 0.005418×eprecip3 [8]

where etemp is early season average maximum temperature 

for (date –10) > doy > (date – 64), doy is day of year, date is 

LSNT sample date (doy), and eprecip is the total early season 

precipitation for (date + 1) > doy > (date – 28). Th e equation 

was developed as discussed above in “Long-Term RZWQM 

Simulations” and by systematically adjusting the timing of 

eprecip and etemp for weather variable calculation similar to 

Malone et al. (2009), which minimized the variance between 

annual RZWQM simulated rate and Eq. [8] predicted Nrate.

In addition to the excellent correlation between Eq. [8] and 

RZWQM simulated LSNT rates, Eq. [8] also accounts for 

76% of the variation in 1997 to 2000 observed LSNT rates 

determined by fi eld soil testing (Fig. 8). Th e lowest LSNT rates 

for observed and Eq. [8] were in 2000 and the highest rates 

were in 1999. Th e least-accurate Eq. [8] determined N rate 

compared to fi eld observations was in 1998 when the diff er-

ence between the two values was 28 kg N ha−1. Th e large 1998 

diff erence between Eq. [8] using observed versus RZWQM 

estimated sampling dates (Fig. 8) was because of the high early 

June rainfall (16.4 cm for 1–14 June); the observed RZWQM-

simulated sampling dates were 27–28 May and 14 June, 

respectively. Th is all suggests potential for development of 

simple tools to estimate side-dressing rates, which could reduce 

the need for soil testing.

Figure 9a illustrates the relationship among early-season 

precipitation and temperature (eprecip, etemp), and LSNT 

rate estimated using Eq. [8]. For example, Nrate increases as 

etemp decreases and eprecip increases. Although interpreting 

the dependence of rate on the interaction between etemp and 

eprecip is possible with Fig. 9a, Fig. 9b helps clarify this inter-

action. Th e variable eprecip aff ected Nrate positively at high 

etemp but slightly less so at low etemp, and Nrate remained 

higher throughout the range of eprecip when etemp was low 

(Fig. 9b). Th is is supported by the slightly smaller slope of 

the linear trend through the Eq. [8] computed values under 

low etemp compared with high etemp (Fig. 9b). Under the 

condition of high eprecip compared with low eprecip, Nrate 

remained higher and less aff ected by etemp (Fig. 9b) due to 

more leaching of crop available N.

Our long-term modeling results confi rm other modeling 

and fi eld research. Using the LEACHMN model, Sogbedji et 

al. (2001) reported that lower economic optimum N applica-

tion rates were associated with low early-season precipitation 

due to less denitrifi cation and leaching. Th is agrees with Kay 

et al. (2006), where fi eld measurements were used to report 

that increasing early-season rainfall result in less plant avail-

able nitrogen. Increasing soil temperature is usually associ-

ated with increasing soil organic matter decomposition (e.g., 

Kirschbaum, 1995; Eq. [1], Fig. 3), and thus higher plant 

available nitrogen during years with higher early-season tem-

perature. Of course, higher early-season temperature also con-

tributes to increased soil evaporation and reduced tile fl ow, and 

thus higher temperature contributes to reduced N leaching 

below the root zone.

Conclusions
Our results suggest that N fertilizer rates determined from 

the LSNT protocol are strongly correlated with early-season 

air temperature and precipitation. Th is conclusion should be 

treated as an impetus for further research. However, we have 

demonstrated that a cross-validated statistical model based on 

early season weather variables could be developed that predicts 

year-to-year variation in central Iowa LSNT-determined N 

fertilizer rates. Further refi nement of this model may lead to 

simple tools that will enhance implementation of the LSNT 

by farmers, which could be of economic and environmental 

signifi cance.

Development of the statistical model used long-term simu-

lations from the agricultural system model RZWQM, which 

was thoroughly tested using observed data from the Walnut 

Creek watershed in central Iowa. Th e long-term simulations 

Fig. 8. N fertilizer rate (N rate) determined from the late spring nitrate 
test (LSNT) as a function of year. N fertilizer rate determined from 
Root Zone Water Quality Model (RZWQM) or Eq. [8] according to 
observed (obs) annual weather variables etemp and eprecip: early-
season temperature and precipitation described in text. Observed 
LSNT rates and Eq. [8] rates with observed LSNT dates are also 
presented (Jaynes et al., 2004). The Eq. [8] soil testing dates were 
according to RZWQM and Eq. [8] with observed soil testing dates are 
according to fi eld notes.
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suggest that the N loss diff erence between LSNT, single spring, 

and single fall applications is mainly from more N remaining 

in the root zone for crop uptake. Th e model testing suggests 

that RZWQM is a promising tool for predicting the water 

quality eff ects of LSNT implementation in watersheds.
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